M•2600

The Mackie Designs $M \bullet 2600$ is a dual channel, high output power amplifier that incorporates a number of unique features including FR "Fast Recovery" design, high continuous current output, and a T-Design constant gradient cooling tunnel for improved cooling efficiency and output device reliability.
The $M \bullet 2600$ is rated at a continuous output of 425 watts per channel into $8 \Omega, 700$ watts per channel into 4Ω and 1000 watts into 2Ω. In bridge mode the $M \bullet 800$ is rated at 1400 watts into 8Ω and 2000 watts into 4Ω. Variable low-cut filters on each channel with a range from off to 170 Hz enable tighter bass response. The built-in limiter helps eliminate clipping. Inputs are balanced/unbalanced $1 / 4^{\prime \prime}$ and XLR, and XLR thru outputs are switchable to send either the full-range signal, or the post-crossover low-frequency or high-frequency output, to another amplifier. Speaker connections on the $M \bullet 2600$ are $1 / 4$ " and Speakon® connectors, with an additional Speakon output for mono bridge operation. An amp mode switch selects stereo, mono, or bridge operation.

- To effectively deal with clipping, an amplifier must be able to recover almost instantaneously. That is the definition of "Fast Recovery." Rather than using negative feedback to help control clipping distortion, the $\mathrm{M} \cdot 2600$ employs a very sparse amount of negative feedback. The use of Baker Clamp circuits on the positive and negative voltage amp stages prevents saturation (and latching) during periods of overdrive. In addition, a transistor senses when the Baker Clamp is active and activates the internal limiting circuits. This results in no latching, instant recovery from overdriving the amp, and a superior sound.
(continued on page 3)
$M \cdot 800 / M \cdot 1400 / M \bullet 1400 i$ Power Amplifiers, 1202-VLZ PRO 12-Channel Mic/Line Mixer, 1402-VLZ PRO 14-Channel Mic/Line Mixer, 1604 VLZ PRO 16-Channel Mic/Line Mixer, 1642-VLZ PRO 16-Channel Mic/Line Mixer, SR24•4-VLZ PRO 24 Channel Mic/Line Mixer, SR32•4-VLZ PRO 32 Channel Mic/Line Mixer, CFX Series 12, 16, and 20 Channel Mic/Line Mixer w/Digital Effects, C300 2-Way Loudspeaker, S500 2-Way Loudspeaker, SWA1501 and SWA1801 Active Subwoofers.

Features

■ 2600 watts max, 2000 watts continuous @ 4 ohms bridged
Ultra-low-noise/low-distortion design
Fast Recovery circuitry reduces distortion at clipping
Two 2nd order, 12 dB/octave, Bessel low-cut filters with variable frequency from Off to 170 Hz
Two superior design 4th order Linkwitz-Riley active crossovers ($24 \mathrm{~dB} /$ octave)
Selectable crossover points of 60,90 , or 120 Hz
Limiter with on/off switch
Balanced/unbalanced 1/4" and XLR inputs
XLR input loop-throughs, selectable for full-range, high-pass, or low-pass output
Speakon® and 5-way binding post output connectors
Detented gain controls calibrated in dB and volts
Signal present and OL LEDs
Channel Status LEDs
Superior T-Design cooling
Five-year, limited warranty (U.S. only)

Applications

Live sound/music reinforcement for churches, clubs, schools, conference centers, hotels

High level A/V playback
Large speech systems

1/2611 High-Current Power Amplifier

M•2600 Specifications

Maximum Power mid-band at 1\% THD:
500 watts per channel into 8 ohms
850 watts per channel into 4 ohms
1300 watts per channel into 2 ohms
1700 watts into 8 ohms bridged mono
2600 watts into 4 ohms bridged mono
Continuous Sine Wave Average Output Power, both
channels driven ($20 \mathrm{~Hz}-20 \mathrm{kHz}$):

| 425 watts per channel into 8 ohms | $<0.025 \%$ THD |
| :--- | :--- | :--- |
| 700 watts per channel into 4 ohms | $<0.050 \%$ THD |
| 1000 watts per channel into 2 ohms | $<0.1 \%$ THD |
| Bridged mono operation $(20 \mathrm{~Hz}-20 \mathrm{kHz}):$ | |
| 1400 watts per channel into $8 \mathrm{ohms}:$ | $<0.05 \%$ THD |
| 2000 watts per channel into 4 ohms | $<0.1 \%$ THD |

Power Bandwidth:
20 Hz to $70 \mathrm{kHz}(+0,-3 \mathrm{~dB}) @ 700$ Watts into 4 ohms

Frequency Response:

20 Hz to $40 \mathrm{kHz}(+0,-1 \mathrm{~dB})$
10 Hz to $70 \mathrm{kHz}(+0,-3 \mathrm{~dB})$

Distortion:

THD, SMPTE IMD, TIM
$<0.025 \% @ 8 \Omega$
$<0.050 \% @ 4 \Omega$
$<0.150 \% @ 2 \Omega$

Signal to Noise Ratio

$>107 \mathrm{~dB}$ relative to rated power into 4 ohms

Channel Separation:

>80dB@1kHz

Damping Factor:

2350 from 0 to 400 Hz
Input Impedance:
$24 \mathrm{k} \Omega$ balanced bridging
Input Sensitivity:
1.23 volts (+4 dBu) for rated power into 4 ohms

Gain:
32.7 dB (voltage gain of 43)

Maximum Input Level:
9.75 volts (+22 dBu)

Rise Time:
$<5 \mu \mathrm{~s}$

Slew Rate:

Voltage Slew Rate	$>60 \mathrm{~V} / \mu \mathrm{s}$
Current Slew Rate	$>30 \mathrm{~A} / \mu \mathrm{s}$ at 2Ω
CMRR:	

$>40 \mathrm{~dB}, 20 \mathrm{~Hz}$ to 20 kHz
Transient Recovery:
$<1 \mu \mathrm{~s}$ for 20 dB overdrive at 1 kHz
High-Frequency Overload and Latching:
No latch up to any frequency or level
Variable Low-Cut Filter:
10 Hz (Off) to 170Hz, 2nd Order Bessel
Internal Crossover:
Switched 60Hz/90Hz/120Hz, 4th Order Linkwitz-Riley
Amplifier input is low-pass filtered when switched to subwoofer mode
Low-pass and high-pass outputs switchable to thru output jacks

Limiter Section:
Complementary Positive and Negative Peak Detecting
Indicators:
6 meter LEDs per channel
SIG (Signal Present), -20, -9, -6, -3, OL (Overload)
CH1 \& 2
PROTECT LEDs
SHORT LEDs
TEMP STATUS
COLD/HOT LEDs

Power Consumption:

1650 watts (18.2A) with musical program fully loaded (2Ω per side, or 4Ω bridged)

AC Line Power:

US	$120 \mathrm{VAC}, 60 \mathrm{~Hz}$
Europe	$240 \mathrm{VAC}, 50 / 60 \mathrm{~Hz}$
Japan	$100 \mathrm{VAC}, 50 / 60 \mathrm{~Hz}$
Korea	$220 \mathrm{VAC}, 60 \mathrm{~Hz}$

AC Drop-out Voltage:
At approximately 63\% of rated line voltage

Physical:	
Height:	$5.20^{\prime \prime}(132 \mathrm{~mm})$
Width:	$19.00^{\prime \prime}(483 \mathrm{~mm})$
Depth:	$15.65^{\prime \prime}(398 \mathrm{~mm})$
Overall Depth:	$16.67^{\prime \prime}(423 \mathrm{~mm})$
Weight:	$55 \mathrm{lbs}(25 \mathrm{~kg})$

H22500
 High-Current Power Amplifier

(continued from page 1)
The $M \bullet 2600$ uses a unique T-Design constant gradient cooling tunnel that draws air in through the front of the amplifier and forces it through the amplifier's sides. The T-Tunnel design provides a shorter, more direct path for cool air. This allows for reduced heat build up and cooler transistor operation.

The amplifier has a subwoofer mode that allows you to turn on the built-in subwoofer crossover. When activated, the signals appearing at the left and right inputs are summed, directed to a low-pass filter, and routed to both output stages. A switch selects the cutoff frequency of the filter at $60 \mathrm{~Hz}, 90 \mathrm{~Hz}$, or 120 Hz .

142011 High-Current Power Amplifier

Architects' and Engineers' Specifications

1. GENERAL. The amplifier shall have a free-standing frame with front and rear brackets for rack-mounting, and supplied with four resilient feet suitable for table-top placement. The amplifier shall be capable of two-channel operation, with a switch to place the amplifier into single-channel operation by bridging the outputs of the two channels.
2. POWER OUTPUT. The two-channel power amplifier shall deliver a rated continuous average sine wave power output over a 20 Hz to 20 kHz bandwidth of 425 watts RMS into 8 ohms per channel, 700 watts into 4 ohms, and 1000 watts into 2 ohms with both channels operating, with no more than 0.05% total harmonic distortion. In single-channel operation it shall deliver 1400 watts RMS into 8 ohms and 2000 watts into 4 ohms, with no more than 0.10% total harmonic distortion.

The power amplifier shall deliver a maximum continuous average sine wave power output at mid-band of 500 watts RMS into 8 ohms per channel, 850 watts into 4 ohms, and 1300 watts into 2 ohms with both channels operating, with no more than 1% total harmonic distortion. In single-channel operation it shall deliver 1700 watts RMS into 8 ohms and 2600 watts into 4 ohms, with no more than 1% total harmonic distortion.
3. POWER SUPPLIES. All necessary operating voltages for the amplifier shall be provided by an internal power supply. A master power switch shall be located on the front panel along with a green power-indicating light.
4. INPUT CHANNEL CONNECTIONS. Each monaural input channel shall have an electronically balanced line-level input, presenting no less than a 20 k ohm impedance to the source. Each input shall have an input sensitivity of +4 dBu , requiring no more than 1.23 V RMS to be driven to rated output into a 4-ohm load. The input connector shall appear on the rear panel as a female XLR-3 type connector. In addition, each monaural input channel shall have a parallel 1/4" TRS phone jack and a male XLR-3 type connector, which can be used as inputs or "thru" jacks for daisy-chaining the input signal to another amplifier, or a high- or low-frequency crossover output for subwoofer applications. Pin 2 of the XLR connectors, and the tip of the $1 / 4^{\prime \prime}$ TRS phone jack, shall be noninverting.
5. INPUT CHANNEL LEVEL CONTROLS. Each monaural input channel shall be equipped with a gain control appearing on the front panel, each having 20 detent positions, and calibrated in dB and volts.
6. FRONT PANEL INDICATORS. Each channel shall have an associated six-segment LED meter appearing on the front panel, capable of displaying signal present, $-20 \mathrm{~dB},-9 \mathrm{~dB}$,

[^0]
$-6 \mathrm{~dB},-3 \mathrm{~dB}$, and overload. Each channel shall have internal status LEDs appearing on the front panel to indicate activation of protect mode and short-circuit protection. Two temperature status LEDs shall appear on the front panel, one to indicate normal operation (COLD) and one to indicate thermal protection (HOT).
7. PROTECTION FEATURES. The amplifier shall provide delayed activation of the outputs at turn-on. Each channel shall have a short-circuit protection circuit for detecting excessive current flow at the output that, when activated, mutes the output for four seconds. The shortcircuit protection shall continuously cycle on and off until the shorted condition is remedied. The amplifier shall have a thermal protection circuit to protect the power devices from over-temperature operation. The circuit shall activate when the internal temperature crosses the safeoperating threshold and, when activated, mute the outputs until the internal temperature cools to a safe-operating temperature, at which time amplifier shall resume normal operation. The amplifier shall have a fan to cool the heat-producing internal components, drawing cool air in from the front, and exhausting warm air out through both sides. The fan speed shall be variable, the speed being determined by the internal temperature and the signal level present at the output. The amplifier shall have an SCR crowbar circuit to protect the speakers against a catastrophic amplifier failure. The circuit shall activate in the presence of continuous DC at the speaker outputs, and shall shut the amplifier down by turning off the highvoltage rails.
8. OUTPUT CONNECTIONS. Each channel shall have a heavy-duty 5 -way binding post speaker output connector appearing on the rear panel, with $3 / 4^{\prime \prime}$ spacing for accommodating standard double banana plugs as well as spade lugs or bare wires. Each channel shall have a Neutrik brand Speakon ${ }^{\circledR}$ output jack appearing on the rear panel in parallel with the binding post. A separate Speakon ${ }^{\circledR}$ connector shall be provided for the bridged mode mono output.

www.mackie.com

16220 Wood-Red Road NE, Woodinville, WA 98072 USA 888.337.7404, fax 425.487.4337, sales@mackie.com
9. AMP MODES. The amplifier shall have a three-way switch appearing on the rear panel for selecting the mode of operation, which shall include stereo (two channels in, two channels out), mono (one channel in, two channels out), and bridge (one channel in, one channel out, bridged between both speaker outputs).
10. OUTPUT APPLICATIONS. The amplifier shall have a three-way switch appearing on the rear panel for selecting between limiter on, limiter off, and subwoofer mode. The defeatable electronic limiter circuit shall sense the onset of clipping and shall limit the input signal and thereby prevent the output from clipping.
11. CROSSOVER. Each channel shall have a 4th order Linkwitz-Riley, $24 \mathrm{~dB} /$ octave crossover with switch-selectable crossover frequencies of 60,90 , or 120 Hz . When the subwoofer mode is selected, the two input channels shall be summed and the low-frequency output from the crossover shall be routed to the selected channel. In the fullrange modes, the high- or low-frequency output of the crossover may be routed to the input thru connector via a rear panel switch.
11. LOW-CUT FILTER. Each channel shall have a lowcut filter with a variable frequency control appearing on the rear panel covering a range of 10 Hz (OFF) to 170 Hz .
12. PHYSICAL CONFIGURATION. The amplifier shall be rack-mountable with rear support rails for extra support, and shall have a steel chassis frame painted grayblack. The amplifier shall be 19 " wide (483 mm), $5.2^{\prime \prime}(3 \mathrm{U})$ tall (132 mm), and 16.67 " deep (423 mm), and shall weigh 55 pounds (25 kg).
13. DESIGNATION. The power amplifier shall be a Mackie Designs M•2600.

Electronic files for this product available at:
www.mackie.com

This Specification Sheet	M2600_SS.PDF
Owner/Operator's Manual	M2600_OM.PDF
CADD files	M2600.DXF

Mackie Designs Inc. continually engages in research related to product improvement. New material, production methods, and design refinements are introduced into existing products without notice as a routine expression of that philosophy. For this reason, any current Mackie Designs product may differ in some respect from its published description, but will always equal or exceed the original design specifications unless otherwise stated. ©1999-2002 Mackie Designs Inc. All rights Reserved. Mackie and the "Running Man" figure are registered trademarks of Mackie Designs Inc.

Part No. 091-211-00 Rev. A 6/02

[^0]: (continued on page 6)

